HYDRODYNAMIC CONNECTIVITY BETWEEN SHALLOW + DEEP ENVIRONMENTS:

A first-order control on phytoplankton blooms in South San Francisco Bay

Lisa Lucas, USGS Tan Thompson, USGS Teff Koseff, Stanford University Stephen Monismith, Stanford University

PRE-RESTORATION SSFB

· 2 primary habitats: shallow shoal & deep channel

 Deep water is location of most historical USGS measurements

http://sfbay.wr.usgs.gov/access/wqdata/

Mean depth (m), South SF Bay

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Mean Depth [m]

2 LESSONS

- l. Remote processes can control locally measured quantities.
- 2. A.) Shallow water processes drive system-level phytoplankton blooms in SSFB.

B.) Deep water processes modulate system-level blooms.

Why would one bathymetric regime have a greater influence? BIOLOGICAL RATES ARE DIFFERENT !! Channel Shoal

depth-averaged light / photosynthesis higher in shoal

 depth-averaged effect of benthic grazers on overlying plankton greater in shoal

BIOLOGY IS FASTER IN SHALLOWS

Hydrodynamics regulates rate of phytoplankton transport between different light/grazing zones.

Channel stratification allows prolonged near-surface photosynthesis without benthic grazing threat.

CONCEPTUAL MODEL NUMERICAL MODEL

MODEL + MEASUREMENTS TAUGHT US 2 LESSONS

Remote processes can control locally measured quantities.

2. A.) Shallow water processes drive systemlevel phytoplankton blooms in SSFB

> B.) Deep water processes modulate system-level blooms.

LESSON 1

Remote processes can control locally measured quantities.

K_y = lateral exchange coefficient, m²/s

Lucas 1997

LESSON ZA

Shallow water processes (e.g. BENTHIC GRAZING) drive system-level phytoplankton blooms.

α^s = benthic grazing rate in shoal, m/d

LESSON ZA

Shallow water processes (e.g. BENTHIC GRAZING) drive system-level phytoplankton blooms.

 α^{s} = benthic grazing rate in shoal, m/d

FIELD MEASUREMENTS

LESSON 2B

Deep water processes (e.g. BENTHIC GRAZING) modulate systemlevel blooms.

 α^{c} = benthic grazing rate in channel, m/d

MODEL

LESSON 2B

Deep water processes (e.g. <u>BENTHIC</u> <u>GRAZING</u>) modulate systemlevel blooms.

α^c = benthic grazing rate in channel, m/d

LESSON 2B

Deep water processes (e.g. <u>STRATIFICATION</u>) modulate systemlevel blooms.

Oepth-averaged Phytoplankton Biomass [mg chl *a* m^{-3]}

MODEL

Lucas 1997

LESSON 2B Deep water processes (e.g. STRATIFICATION) modulate system-level blooms.

FIELD MEASUREMENTS

Thompson 1997

LEST YOU DOUBT

Thompson 1997

2 LESSONS

- I. Remote processes can control locally measured quantities.
- 2. A) Shallow water processes drive system-level phytoplankton blooms in SSFB

B) Deep water processes modulate system-level blooms.

WHAT DOES THIS MEAN AS SSFB CHANGES?

Any habitats (esp. shallow habitats) that are hydrodynamically connected to other habitats should be seen as potentially strongly influencing those connected habitats, because:

1. Biology is fast in shallow water

2. Hydrodynamic connectivity allows the processes in one location to remotely control that which we measure in another location.